Tree, Level Order Traversal
Binary Tree Level Order Traversal
解法一:用queue去做level order,不写了。
解法二:用dfs做, 本质是一个preorder traversal。
public class Solution {
public List<List<Integer>> levelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
dfs(result, root, 0);
return result;
}
private void dfs(List<List<Integer>> result, TreeNode root, int depth) {
if (root == null) {
return;
}
if (depth >= result.size()) {
result.add(new ArrayList<Integer>());
}
result.get(depth).add(root.val);
dfs(result, root.left, depth + 1);
dfs(result, root.right, depth + 1);
}
}
Binary Tree Level Order Traversal II
就写DFS的解法了, 每次depth >= result.size()时,在result的头上插入一个新的ArrayList, 然后这个ArrayList的index是result.size() - depth - 1。记得reuslt的类型要用LinkedList,因为都是addFirst()的操作。
public class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
LinkedList<List<Integer>> result = new LinkedList<List<Integer>>();
dfs(result, root, 0);
return result;
}
private void dfs(LinkedList<List<Integer>> result, TreeNode root, int depth) {
if (root == null) {
return;
}
if (depth >= result.size()) {
result.addFirst(new ArrayList<Integer>());
}
result.get(result.size() - depth - 1).add(root.val);
dfs(result, root.left, depth + 1);
dfs(result, root.right, depth + 1);
}
}
Binary Tree Zigzag Level Order Traversal
根据不同的操作选择不同的list的类型。还是一个preorder traversal。
public class Solution {
public List<List<Integer>> zigzagLevelOrder(TreeNode root) {
List<List<Integer>> result = new ArrayList<List<Integer>>();
dfs(result, root, 0);
return result;
}
private void dfs(List<List<Integer>> result, TreeNode root, int depth) {
if (root == null) {
return;
}
if (depth >= result.size()) {
if (depth % 2 == 0) {
result.add(new ArrayList<Integer>());
} else {
result.add(new LinkedList<Integer>());
}
}
if (depth % 2 == 0) {
result.get(depth).add(root.val);
} else {
result.get(depth).add(0, root.val);
}
dfs(result, root.left, depth + 1);
dfs(result, root.right, depth + 1);
}
}
Populating Next Right Pointers in Each Node
这题的题目给出了这颗树是一个perfect binary tree的条件。
解法一:recursive solution
public class Solution {
public void connect(TreeLinkNode root) {
if (root == null || root.left == null) {
return;
}
root.left.next = root.right;
if (root.next != null) {
root.right.next = root.next.left;
}
connect(root.left);
connect(root.right);
}
}
解法二:iterative solution
public class Solution {
public void connect(TreeLinkNode root) {
TreeLinkNode current = root;
TreeLinkNode next = null;
while (current != null && current.left != null) {
next = current.left;
while (current != null) {
current.left.next = current.right;
if (current.next != null) {
current.right.next = current.next.left;
}
current = current.next;
}
current = next;
}
}
}
Populating Next Right Pointers in Each Node II
这题里不默认这个树是perfect binary tree了,可以是任意形状的。
iterative solution: level order的遍历
public class Solution {
public void connect(TreeLinkNode root) {
TreeLinkNode current = root;
TreeLinkNode next = null;
TreeLinkNode prev = null;
while (current != null) {
while (current != null) {
if (current.left != null) {
if (next == null) {
next = current.left;
}
if (prev == null) {
prev = current.left;
} else {
prev.next = current.left;
prev = current.left;
}
}
if (current.right != null) {
if (next == null) {
next = current.right;
}
if (prev == null) {
prev = current.right;
} else {
prev.next = current.right;
prev = current.right;
}
}
current = current.next;
}
current = next;
next = null;
prev = null;
}
}
}
Binary Tree Right Side View
解法一: dfs(preorder traversal)
public class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
dfs(result, root, 0);
return result;
}
private void dfs(List<Integer> result, TreeNode root, int depth) {
if (root == null) {
return;
}
if (depth >= result.size()) {
result.add(root.val);
}
dfs(result, root.right, depth + 1);
dfs(result, root.left, depth + 1);
}
}
解法二:level order traversal with queue
public class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> result = new ArrayList<Integer>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode node = queue.poll();
if (i == 0) {
result.add(node.val);
}
if (node.right != null) {
queue.offer(node.right);
}
if (node.left != null) {
queue.offer(node.left);
}
}
}
return result;
}
}